AXIAL LAMINAR FLOW OF A VISCOPLASTIC FLUID
IN AN ANNULAR TUBE

S. A. Bostandzhiyan UDC 532.517.2:532.135

Approximate relations suitable for engineering calculations are derived for determining the
boundary of the core when the pressure gradient is given, the boundary and width of the core
when the volumetric flow rate is given, and the pressure losses.

The axial flow of a viscoplastic fluid in the annular space between two coaxial cylinders has been
investigated by a number of authors [1-8]. The problem was first solved by Volarovich and Gutkin in [1].
Analytical expressions were obtained for the velocity profiles and for the volumetric flow rate, with a
constant of integration. The calculation of the latter required the solution of a transcendental equation.

For the case in which the thickness of the gap is less than the radius of the inside cylinder the authors

gave a first-approximation relation for calculating the root of the transcendental equation. In [2] Shchipanov
found the second approximation, Elaborating their own work, Volarovich and Gutkin analyzed the boundary-
layer flow regime when the thickness of the flow zone is much smaller than the thickness of the core [8].

For the velocity profiles and volumetric flow rate in this flow regime they obtained relations that are valid
for any ratio of tube radii.

An approximate relation for the flow of fluid through an annular capillary is given in [3] without
derivation. The author does not indicate the limits of applicability of his relation, but, if we are to judge
from its form, it was derived on the assumption of a small core. The flow problem for a viscoplastic fluid
in an annular tube has been investigated by Mori and Ototake [4], but their solution is erroneous. Laird
[5] obtained a solution similar to that of Volarovich and Gutkin, emulating their method of solution. The
complete expression that they obtained for the flow rate is rather cumbersome. For small cores they de-
rived an approximate relation. Concurrently with Laird, Slibar and Paslay [6] analyzed the flow problem
for a viscoplastic fluid in an annular tube. Unlike [1, 5], in which ordinary second-order differential equa-
tions were integrated in order to determine the velocity profile in the shear-flow domains, in [6] the au-
thors first found a unified shear-stress distribution for the entire annular gap. The velocity profiles in the
shear-flow domains were then determined by integration of the rheological equation relating the shear
stress to the velocity gradient.

Fredrickson and Bird [7] undertook the task of deriving a simpler expression for the volumetric
flow rate and presented their solution in a compact form, using dimensionless variables. Their paper
includes exhaustive tables of values of the outside radius of the core and the core velocity for various
ratios of the cylinder radii and core widths. The results of the calculations are also summarized in graphi-
cal form. An approximate relation was derived for small cores,

The principal difficulty in trying to solve the given problem lies in the determination of the constant
of integration (core boundary) from the transcendental equation when the pressure gradient is given or,
when the volumetric flow rate is given, in the determination of the core boundary and core width from a
set of two equations, one of which is transcendental and the other is a fourth-degree algebraic equation.
The lack of analytical expressions for the roots of the transcendental equation and the set of equations
greatly impedes the analysis of the solution. In particular, it is difficult to use the solution for the pro-
cessing of viscosimetric data obtained by means of a capillary with coaxial tubes, or to obtain such an
important characteristic as the pressure losses associated with the axial flow of a viscoplastic fluid in an
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Fig. 1. Absolute errors 6, @) and &, (b) versus the relative
core width . 1) » =0.1; 2) 0.2; 3) 0.3; 4) 0.4; 5) 0.5.

annular tube. In some of the papers cited above approximate relations have been obtained for the volumetric
flow rate under certain constraints, mainly the assumption of a narrow core, but in none of those papers
has the error of the resulting equation been estimated.

We now give approximate expressions, suitable for engineering calculations, for the roots of the
transcendental equation and roots of the combined transcendental and algebraic equations; these expressions
are valid for all core widths and for a wide range of ratios of the cylinder radii.

1. Suppose that a viscoplastic fluid with a shear strength 7; and plastic viscosity u flows under the
action of a pressure gradient P = dp/dz in the annular gap between two coaxial circular cylinders of radius
R, and Ry, Ry < Ry). We use the solution obtained by Fredricksonand Bird [7]as the most compact and
amenable to investigation. The dimensionless velocity profiles v, and v, in the shear-flow domains, the
core velocity vy, and the volumetric flow rate Q are expressed by the relations

1
v () =B —p)— “2—(92 — %)+ 0(p,— Py In(p/ %), x<p<Cpy, (1.1}
vam=ﬁm—n%~éu—m%+m@f—mm@ p<p< 1.2)
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The outside and inside radii p, and p; of the core are related by the equation
py—0; =B, (1.6)

i.e., the parameter g expresses the dimensionless width of the core. If the pressure gradient P is given,
then the parameter 8 is known, and for the complete solution of the problem if is required to know the out-
gide radius p, of the core. The latter is determined from the transcendental equation

200, — ) In "Zp'f 1B +2B(—p) =0, w7

2

which is obtained from the condition of equal velocities at the boundaries of the core. We now find an ap-
proximate expression for the roots of Eq. (1.7).

It is clear from (1.5) that as 7, — 0 the core width B tends to zero, and in the limit § =0 (Newtonian
fluid) we obtain from (1.7)

2

A=q/ X1
0 l/ 2lnx (1.8)
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TABLE 1. Maximum Values 6; () of the Absolute Errors for
Various Values of »

“ l 6; t % . 6; \ % ( &y

0,1 0,399.10-2 0,4 0,208-10-3 0,7 0,619.10-°

0,2 0,136.1072 0,5 0,745-10°4 0,8 ¢,102.10-°

0,3 0.522.107% 0,6 0,241-10¢ 0.9 0,541-1077
i

A

(A is the value of p, when 8 = 0). It is expected that for small 8 the values of calculated according to

the relation
o® =2+ £ 1.9)
2
0
should be close to the roots of the transcendental equation (1.7). Curves of the absolute error 6; = p, — pz( )
as a function of the dimensionless relative core width £ = 8/ (1 — ) are given in Fig. 1a. The exact values
py of the roots of (1.7) were found by numerical solution on a computer. The relative error in the deter-

mination of p, according to Eq. (1.9) does not exceed 1% for 0 = ¢ = 0.6 when v > 0.2, and when« > 0.6
the same is true for all values of the core width.

It is apparent from Fig. 1a that the absolute error curves have a parabolic shape, passing through
the origin and intercepting the horizontal axis near the point £ = 0.5. It is also a simple matter to deter-
mine the ordinates of the points at which the curves terminate for £ =1. Thus, when the core width 8 tends
to the annular gap width 1 — », the radius p, tends to unity. Denoting the values of 6, at £ =1 by c(n), we
have

1+x . (1.10)

c{n) = 5

We now consider the curves determined by the expression
L+
v= (5 Jree— 1.

These curves are parabolas passing through the points £ =0 and ¢ = 0.5 and assuming the value y = c(n) at
¢ =1. Consequently, if we form the expression

i =+ () (P ). (111

2 T—a\l —un

then the values of p, determined from this expression will be much closer to the roots of the transcendental
equation (1.7) than those determined by Eq. (1.9). Curves of the absolute errors 8, = p, — ,02(1) for various
values of » are given in Fig. 1b. The relative error in the caiculation of the root of Eq. (1.7) according

to Eq. (1.11) does not exceed 0.55% for » =0.1, 0.065% for » = 0.3, or 0.009% for » = 0.5. The maximum
values 6;(%) of the absolute errors for various values of w are presented in Table 1. It is seen from Table
1 that as » is increased the error in the calculation of p, according to Eq. (1.11) falls off sharply. The
accuracy with which p, is determined according to (1.11) is fully acceptable for engineering calculations.
The shape of the curves in Fig. 1b suggests a further refinement of Eq. (1.11). The curves in Fig. ib pass
through the points ¢ = 0 and £ =1 and have maxima at points whose abscissas are close to £* = 0.62. These
curves can be approximated by a polynomial of the form

=0 (%) (8 + b2 + ol +d). (-12)
The constants ay, by, ¢, and d; can be determined from the conditions

d .
7?:0 for T=0% th="5:(x) for {=1* (1.13)

Yy =10 for {=0andf = 1;
Using these conditions, we obtain a; = —4.324, by =2.760, ¢; =1.564, and d; = 0. It is seen from Table 1
that the function 6§k {(») has an exponential-type behavior. For the interval 0.1 =w = 0.5, in which it is
meaningful to use the more accurate expression for p,, the function 6;‘ () is adequately described by the
expression
85 (%) = 0.0127 exp (4.176x> — 12.016%).
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Fig. 2. Absolute error 6; vs &;. 1) % =0.1; 2) 0.2; 3) 0.3; 4) 0.4; 5)
0.5; 6) 0.6; 7) 0.7; 8) 0.8; 9) 0.9.

Fig. 3. Relative core width vs logl. 1) » =0.1; 2) 0.9.

Injecting the correction (1.12) into expression (1.11), we obtain

@ _ B 1+% p 2B
o =y +(——— xo) ( 1)

2 T—g\l—xn

100127 exp (4.176x—12.016%) [ — 4.324 (I—ﬁ—«)z 1 2.760 (I—ﬁ——)z + 1,564(1 B )J . (1.14)

—x —x —x

In the determination of p, according to Eq. (1.14) the relative error does not exceed 0.1% for » =0.1, 0.015%
for w =0.3, or 0.0015% for w =0.5. Equation (1.14) gives good results for smaller values of » as well.
For example, the relative error is not greater than 1% for w = 0.02.

2. When the volumetric flow is given, both the core boundary and the core width 8 (pressure gradient)
are unknown quantities. Their determination requires the simultaneous solution of the set of equations
(1.4) and (1.7). We transform the flow expression (1.4). We replace P in accordance with (1.5), and the
volumetric flow rate by the expression @ = R} —%2)vgy. As a result, Eq. (1.4) is transformed to the
following:

L= =29, (0, B) (1 =) — (1 + ) B+ @ —pr p— 20 P p = @)

For a fixed geometry of the annular tube the solution depends on the one dimensionless complex I.
As I — 0 we have in the limit the case of a Newtonian fluid flow. The solution of Eq. (2.1) in this case is 8
=0, and the solution of Eq. (1.7) is py = Ag. It is easily verified that in the other limiting case, whenI
— o, the set of equations (1.7) and (2.1) has the solution § =1 — n, py =1, i.e., as I — = (vay — 0) the
core width tends to the width of the annular gap, and the outside radius of the core tends to the radius
of the outside cylinder. Consequently, as I varies from 0 to « the core width varies from zero to the width
of the annular gap.

Next we determine approximately the roots of the set of equations comprising (1.7) and 2.1). As
shown above, expression (1.11) yields, with good accuracy, the relationship between p, and 3. If we replace
py in (2.1) in accordance with (1.11), in place of the system of one transcendental and one algebraic equa-
tion we obtain one seventh-degree algebraic equation in B. It can be solved by numerical methods. This
approach can be used with reasonable accuracy to obtain g and then, from Eq. (1.11), p,. The relative
error in the determination of g for all values of 1 in this case is at most 0.8% for w = 0.1 or 0.08% for »
= 0.5. The relative error in the determination of p, according to (1.11) on the basis of the value found for g8
is even smaller. Still greater accuracy can be obtained by using expression (1.14). The determination of
the roots of Eq. (2.1) is far simpler than the determination of the roots of the set of equations, but sizable
difficulties are nevertheless encountered. We therefore set ourselves the goal of finding an explicit ex-
pression for the roots of the set of equations in terms of the parameters » and I. We substitute the fol-
lowing expression, rather than (1.11), in place of p, in Eq. (2.1):

92=M+—g— +c 2.2)
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where ¢ is determined according to (1.10) (we drop the argument » for notational simplicity). With this
substitution Eq. (2.1) goes over to the quadratic equation

Ap*—4Bg +C =0, (2.3)
where
3 el
A= 1?‘2 ;B = H;;% *%(Amc)w LR 0= (L —d) (12— 200+ ).
The solution of Eq. (2.3) yields the following zeroth approximation for 8:
By 2B —1V4B—AC 2.4)

A

The minus sign is chosen to guarantee that 8 — 0 as I — 0. It is easily verified that8; —~1 —n as I — =,
This result is a consequence of the fact that for 8 =1 —«», according to 2.2), p, =1, i.e, 8 and p, are
equal to the exact values of the roots of the set of Eqs. (1.7) and (2.1) when I = o,

It is readily shown that as I — 0 the quantity 8, also tends to zero, i.e., to the exact value of the root.
Recognizing that B — « as I — 0, we represent the square root in (2.4) as follows:

AC AC
28 1— =92B(1—
l/ 4B? < 8B )
Using this expression, we obtain

B :\V/_C_: 3(1— %% [l 4 %®>—2(A, + )1 2.5)
T4 4B —w) (1 L) —2(h Lo 1] '

Hence it is clear that as I — 0 the quantity g, also tends to zero. Therefore, we arrive at the conclusion
that as I increases from 0 to = the approximate value 3, increases from 0 to 1 —«, i.e., varies in the
same interval as the exact value 8. At the end-points of the interval the approximate value g, obtained
according to Eq. (2.4) coincides with the exact value, i.e., the absolute error is zero at the end-points of
the interval. Curves of the absolute error 6; =8 — g, as a function of £, = 8y/ (1 —n) for several values

of n are shown in Fig. 2. These curves have one striking attribute: their maxima are located at points
whose abscissas are close to £, = 0.47. This fact facilitates the choice of approximating function. We seek
it in the form

Yy=m (x) (Eg -+ a2§g —+ bz@% + ol + d2)~ (2.6)

Here m{n) represents the values of the maxima of the curves. The function mt) is well approximated
by the expression

1 (x) = [0.088 4 0.0 35 {1 — )4 (1 —a). (2.7)
The constants a,, by, ¢y, and d; are determined from the conditions
Y, =0 for §y=0andl, = 1; 4y =m(x) for Ly=047, go=0 for f,=0.47.
Using these conditions, we found a, =—0.973, b, = —4.275, ¢, =4.248, and d, = 0. With the correction y,
we obtain the following approximate equation for g:
B = Po + [0.088 + 0.035(1 —w)*] (1 —2) [L6—0.973 (3— 4.275 [F -+ 4.248 ¢,). 2.8)

The relative error (8 — )/ in the determination of 8 according to Eq. (2.8) is at most 1% for all w > 0.1
and £, > 0.2, and as ¢, is increased (as I is increased) the accuracy improves. For example, whenx > 0.4
&g > 0.5, the relative error does not exceed 0,1%. With a reduction in {, the relative error increases, at-
taining from 2.5% to 3.5% as £, — 0 for various values of » greater than 0.1,

We now deduce an approximate equation that should give better results than Eq. (2.8) for smail Lo
To do so we need to choose an approximating function that will better describe the curves of Fig. 2 near
the origin. We can easily find the angular coefficient of the tangents to the curves through the origin. We

have
dg, B do 4= ( dfy ( ) @9
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For small values of I the quantity 8, decreases with I in accordance with (2.5). The character of the de-
crease of the exact value of 8 with I can be determined with the help of Eq. (2.1). It is clear from this
equation that for small I the value of 8 is of the order I. In Eq. (2.1) we replace p, by expression (1.9),
which is valid for small 8. Rejecting second- and higher-order small terms in Eq. (2.1), we obtain

1
ﬁ%T(lJrn*—-zxﬁ)I . (2.10)

According to (2.10) and (2.5), we have in the limitas 1 — 0
dp 14 x? — 22

By TR —2(hgFop

Substituting this expression for the derivative into (2.9) and denoting the angular coefficient of the tangents
to the curves at ¢; = 0 by nn), we obtain

2 (24 + O (1 — %) @.11)
L4 %2 —2(Ag 4 0¥

For the initial segments of the curves we seek the approximating function in the form
Yo = m (%) (65 + asl0 + BT + cild + diT, +ey). @.12)

We determine the constants as, b, c3, dj, and e; from the conditions

n®) =

Yy =10 for [, =0and}, =1; gy, =m (x),
ys =0 for To =0.47; ys=n(x) for g, =0.

Using these conditions, we finally obtain
B, =By +m(x) 22 (2 + 18.291 2% — 37.119C, + 17.829) + n(x) &, (— 4.527 L5 + 8.782 L, — 5.255). 2.13)

In the calculation of 8 according to Eq. (2.13) the relative error for » > 0.1 is at most 1% for all
values of I. But this equation must be used for ¢, < 0.2, whereas for ¢, > 0.2 it is required to use Eq.
(2.8), because it is simpler than (2.13) and affords greater accuracy than (2.13) for large £,.

Consequently, we propose the following program for finding the roots of the set of Egs. (1.7) and
(2.1). For a given value of I determine 8, according to Eq. (2.4). If 8, > 0.2, calculate 8 according to Eq,
(2.8), but if g < 0.2, then according to Eq. (2.13). Once 8 has been found, calculate p, according to Eq.
(1.11). The accuracy in this determination of p, is higher than the accuracy in the determination of .
For » > 0.3, for example, the relative error is at most 0.1% for all values of I.

3. The relations obtained in the preceding section readily enable us to determine the pressure
losses in the flow of a viscoplastic fluid in an annular tube. According to (1.5), we obtain the following
expression for the pressure drop per unit length of the tube:

b _ 2o
dz RB

It follows from (3.1) that the determination of the pressure gradient reduces to the determination
of the core width 8. If the volumetric flow rate is given, we can determine the Il'yushin parameter I.
From the known value of I the core width 8 is determined according to Eq. (2.8) or (2.13), and the pres-
sure gradient according to Eq. (3.1). If the pressure gradient has been found, it is a straightforward task
to determine the pressure losses in a tube section of length L. Curves of the dimensionless relative core
width as a function of the logarithm of I for v from 0.1 to 0.9 in steps of 0.1 are shown in Fig. 3.

(3.1)

NOTATION
r, Z are the cylindrical coordinates;
Ry, Ry are the inside and outside radii of the cylinders;
p is the pressure;
P =dp/dz is the pressure gradient;
[ is the plastic viscosity;
Ty is the shear strength;
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v = 2u/ PRY)v, is the dimensionless velocity;

p=r/ Ry is the dimensionless radial coordinate;

P1y Py are the dimensionless core boundaries;

» =Ry/Ry is the ratio of the cylinder radii;

B8 =271,/ PR, is the dimensionless parameter (core width);

I =Ry7y/ UVay is the Il'yushin dimensionless parameter;

Vav is the average velocity over the tube cross section.
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